Synthesis of α-Pyridone-Based Azaheteroaromatics by Intramolecular Vinylketene Cyclizations onto the $\mathbf{C}=\mathbf{N}$ Bond of Nitrogen Heteroaromatics

Angela Gurski Birchler, Fuqiang Liu, and Lanny S. Liebeskind*
Sanford S. Atwood Chemistry Center, Emory University, 1515 Pierce Drive, Atlanta, Georgia 30322

Received August 2, 1994^{8}

Abstract

Substituted quinolizin-4-ones and ring-fused α-pyridone derivatives have been synthesized by the construction of 2,3-disubstituted-4-(2-azaheteroaryl)-2-cyclobutenones followed by thermal rearrangment. 4-(2-Azaheteroaryl)-2-cyclobutenones have been prepared regioselectively by the addition of 2-lithioazaheteroaromatics to cyclobutenediones and by palladium catalyzed cross-coupling of 4 -chloro-2-cyclobutenones with 2-tri-n-stannylazaheteroaromatics. The thermal transformation is proposed to occur by ring-opening of the cyclobutenone followed by intramolecular cyclization of the transient vinylketene onto the carbon-nitrogen double bond of the azaheteroaromatic. A variety of quinolizin-4-ones, imidazo[1,2-a]pyridin-5-ones, 1-oxopyrido[2,1-b]benzothiazoles, and thiazolo-[3,2- α]pyridin-5-ones were prepared.

Introduction

The last few years have witnessed the development of a powerful new methodology for the synthesis of substituted aromatic systems and quinones proceeding through putative dienylketene intermediates (eq 1). The transient

(Eqn 1)
dienylketenes can be generated by thermolysis of an appropriately substituted cyclobutenone which may be accessed through cyclobutenediones by nucleophilic addition, ${ }^{1-7}$ through 4 -chloro-2-cyclobutenones via palladium catalyzed cross couplings of organotin reagents ${ }^{8-12}$ and through the $[2+2]$ cycloaddition of in situ generated vinyl ketenes to electron-rich alkynes. ${ }^{13-17}$ Variations on

[^0]this basic theme are easily conceived and judicious heteroatom permutations of the dienylketene should provide direct synthetic entry to a variety of valuable heterocyclic systems. Already a new synthesis of $\alpha-p y-$ rones has been developed (eq 2) ${ }^{11}$ and a novel approach

to indolizine-5,8-diones was described. ${ }^{18}$ In a previous study that focused on the regiocontrolled synthesis of $1,2-$ dioxygenated aromatics, ${ }^{1}$ thermolysis of 2 -alkoxy-3,4-di-n-butyl-4-(2-pyridyl)-2-cyclobutenone gave exclusively the quinolizinone shown in eq 3 . Herein is documented a study of this new synthesis of pyridone-based substituted azaheteroaromatic ring systems, 3, which were constructed by thermolysis of 4-(2-azaheteroaryl)cyclobutenones, 2, generated either by addition of a 2 -lithioazaheteroaromatic to a cyclobutenedione, 1 , or by palladium catalyzed cross-coupling of a 4 -chlorocyclobutenone, 4, with a 2 -(tri- n-butylstannyl)azaheteroaromatic, 5. The transformation apparently occurs by cyclization of a transiently generated vinylketene onto the carbonnitrogen double bond of the azaheteroaromatic (eq 4). Specifically, this new chemistry provides access to highly fluorescent heteroaromatic ring systems of documented medicinal interest: ${ }^{19-29}$ quinolizin-4-ones, 1-hydroxyquin-

[^1]

(Eqn 4)

olizin-4-ones, imidazo[1,2- α]pyridin-5-ones, 1-oxopyrido-[2,1-b]benzothiazoles, and thiazolo[3,2-a]pyridin-5-ones.

Results and Discussion

To benchmark the study, 2-lithiopyridine was added to 3,4-diethyl-3-cyclobutene-1,2-dione, and the resulting alkoxide was trapped in situ by acetylation providing in 40% yield the moderately unstable 1,2 -adduct, $2 \mathbf{a}$ (eq 5). Also isolated in 11% yield was the acetylated product of 1,4 -addition of 2 -lithiopyridine to the cyclobutenedione. The 1,2 -adduct rearranged within 4 h at $100^{\circ} \mathrm{C}$ in dry, argon-sparged toluene to provide 1-acetoxy-2,3-diethyl-quinolizin- 4 -one, $\mathbf{3 a}$, in 86% yield. When the procedure was repeated without purification of the intermediate $\mathbf{2 a}$, 3a was obtained in 41% overall yield after thermolysis (Table 1, entry 1).

This proved to be a general process. A variety of substituted cyclobutenediones were treated in THF at $-78^{\circ} \mathrm{C}$ with preformed 2-azaheteroaryl lithiates, generated either by deprotonation with n-butyl or t-butyllithium or by lithium halogen exchange from the corresponding bromides (see Table 1). ${ }^{30}$ Because higher yields usually resulted, the 1,2 -addition products were protected in situ by addition of acetic anhydride to the reaction mixtures at $-78^{\circ} \mathrm{C}$. The crude cyclobutenone intermediates, 2, were isolated using an aqueous NaHCO_{3} quench followed by extraction with EtOAc. The 1,2-adducts were moderately unstable; therefore, it proved best to transform them directly into the desired heterocycles by thermolysis (Table 1). The crude cyclobutenones were heated under an argon atmosphere between 85 and 100 ${ }^{\circ} \mathrm{C}$ in dry, argon-sparged toluene, dioxane, or 1,2 dichloroethane; the choice of solvent did not appear to affect the thermolysis yield.

In one case (Table 1, entry 5) the 4-hydroxycyclobutenone intermediate was studied without protection by acetylation. Addition of 2 -lithiopyridine to 3 -isopropoxy-

[^2]4-phenylcyclobutenedione at $-78{ }^{\circ} \mathrm{C}$ gave, after quenching with aqueous NaHCO_{3} at $-78{ }^{\circ} \mathrm{C}$, a crude oil that was subjected to thermolysis in dioxane at $90^{\circ} \mathrm{C}$ for 2 h and produced 1-hydroxy-2-isopropoxy-3-phenylquinolizin4 -one, 3 e, in 48% yield. Acetylation of 3 e gave, in 94% yield, a product identical to $\mathbf{3 d}$, which had been prepared directly from the 4 -acetoxycyclobutenone, 2d (Table 1, entry 4).

The following observations pertain to the results listed in Table 1. Moderate to good isolated overall yields were obtained in most cases. Because of the good yield observed in the thermolysis step documented in eq 5 ,

(Eqn 5)
above, any diminution in yield is presumed to be due to a low yield in the formation of the 1,2 -adduct. With the 5 -membered ring heteroaryl lithiates (see Table 1, entries 7-12) only 1,2 -addition products, 2 , were observed, while in some cases 2 -lithiopyridine produced small amounts of 1,4 -adducts in addition to the desired 1,2 -addition products. Varying reaction conditions (addition order, reaction temperature, solvent mixture) did not significantly change the ratio of 1,2 to 1,4 -addition products. 2-Lithioazaheteroaromatics added regioselectively to unsymmetrically substituted cyclobutenediones (see Table 1 , entries $3-6,11,12$), addition occurring exclusively at the more electron-deficient ketone. The isolated cyclobutenone intermediates rearranged upon thermolysis to give the expected quinolizinones and pyridinones. The formation of an unusual byproduct in one example is worth noting. Addition of 2-lithio-1-methylimidazole to 3 -(N, N-dibenzylamino)-4-methylcyclobutene-1,2-dione followed by in situ reaction with acetic anhydride gave a mixture of the expected 1,2 -addition product, $\mathbf{2 k}$, and the unacetylated 4-hydroxycyclobutenone, $\mathbf{2 k} \mathbf{k}^{\prime}$ (eq 6). Ther-

molysis of the crude mixture gave the anticipated acetoxypyridinone product, $\mathbf{3 k}$, in 33% yield along with the

Table 1. Pyridone-Based Heteroaromatics by Addition of 2-Lithio Azaheteroaromatics to Cyclobutenediones Followed by Thermolysis

entry	R^{1}	R^{2}	lithiate	Z	R^{3}	R ${ }^{4}$	R^{5}	compd no., overall yield (\%)
1	Et	Et	2-lithiopyridine	$\mathrm{CH}=\mathrm{CH}$	OAc	H	H	3a, ${ }^{\boldsymbol{a}} 41$
2	$n-\mathrm{Bu}$	$n-\mathrm{Bu}$	2-lithiopyridine	$\mathrm{CH}=\mathrm{CH}$	OAc	H	H	3b, ${ }^{\text {a }} 50$
3	Me	$i-\mathrm{PrO}$	2-lithiopyridine	$\mathrm{CH}=\mathrm{CH}$	OAc	H	H	3c, ${ }^{6} 50$
4	Ph	$i-\mathrm{PrO}$	2-lithiopyridine	$\mathrm{CH}=\mathrm{CH}$	OAc	H	H	3d, ${ }^{6} 60$
5	Ph	$i-\mathrm{PrO}$	2 -lithiopyridine	$\mathrm{CH}=\mathrm{CH}$	OH	H	H	3e, 48
6	Ph	$i-\mathrm{PrO}$	2-lithio-3-methoxypyridine	$\mathrm{C}(\mathrm{OMe})=\mathrm{CH}$	OAc	H	H	3f, 29
7	Et	Et	2-lithiothiazole	S	OAc	H	H	3g, 44
8	Me	Me	2-lithiobenzothiazole	S	OAc	benzo		3h, 56
9	Et	Et	2-lithiobenzothiazole	S	OAc	benzo		3i, 54
10	Et	Et	2-lithio-1-methylimidazole	NMe	OAc	H	H	3j, 65
11	Et	$\mathrm{Bn}_{2} \mathrm{~N}$	2-lithio-1-methylimidazole	NMe	OAc	H	H	3k, ${ }^{\text {c }} 63$
12	Ph	$i-\mathrm{PrO}$	2-lithio-1-methoxymethylimidazole	N-MOM	OAc	H	H	31, 38

${ }^{a}$ Small amounts ($<11 \%$) of a 1,4-addition product was also isolated. ${ }^{b}$ Trace amount of an unidentified regioisomer was also isolated. ${ }^{c}$ In situ protection performed with $\mathrm{Ac}_{2} \mathrm{O}$ /pyridine. 15% of a lactone byproduct was also isolated.
butenolide, 6, in 37% yield. This lactone results from the unacetylated cyclobutenone where the free hydroxyl substituent is able to attack the vinylketene intermediate formed during thermolysis. To confirm the source of the lactone byproduct a purified sample of 4-hydroxy-4-(1-methylimidazo- 2 -yl)-2-cyclobutenone, $2 \mathbf{k}^{\prime}$, was isolated and subjected to thermolysis to yield 6 as the sole product. If the reaction mixture resulting from addition of 2 -lithio-1-methylimidazole to 3 -(N, N-dibenzylamino)4 -methylcyclobutene-1,2-dione was allowed to warm to room temperature and was then quenched with acetic anhydride and pyridine, a product mixture resulted that gave, after thermolysis, the desired pyridinone, $\mathbf{3 k}$, in 63% yield along with the butenolide byproduct, $\mathbf{6}$, in only 18% yield (see Table 1, entry 11).
The direct formation of a butenolide on thermolysis of a 4-hydroxycyclobutenone is unusual, since other 4-hydroxycyclobutenones produce lactones on photolysis, ${ }^{31}$ but not typically on thermolysis except in certain cases. ${ }^{32-34}$ It is probable that the 1,2 -adduct, $2 \mathbf{k}^{\prime}$, exists in a stable hydrogen-bonded conformation that internally "protects" the imidazole imine nitrogen and disfavors intramolecular cyclization of the imidazole $\mathrm{C}=\mathrm{N}$ bond onto the ketene intermediate (eq 7, stereoisomer A). Equilibration of the vinylketene stereoisomers \mathbf{A} and \mathbf{B} would allow closure to the butenolide 6 as observed.
The addition of aromatic, vinylic, and acetylenic organolithium nucleophiles to cyclobutenediones produces substituted cyclobutenones that can rearrange to 1,4dioxygenated aromatics (or quinones) on thermolysis. The related palladium catalyzed cross-coupling of unsaturated organostannanes with 4-chlorocyclobutenones delivers cyclobutenones that are comparably substituted to provide phenol-based compounds when subjected to thermolysis. ${ }^{1,8-12}$ This palladium catalyzed cross-cou-

[^3]
pling variant was studied as a means of generating the quinolizin-4-one and 1-oxopyrido[2,1-b]benzothiazole ring systems.
The synthesis of 2 -isopropoxy-3-methylquinolizin-4one, $\mathbf{3 m}$, is representative of the cross-coupling/rearrangement process (eq 8). A solution of 4-chloro-3-

(Eqn 8)
isopropoxy-2-methyl-2-cyclobutenone and 2 -tri- n-butylstannylpyridine in dry toluene was sparged with N_{2} then $2.5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $10 \mathrm{~mol} \%$ tris(2 -furyl)phosphine (TFP) were added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ overnight to induce coupling, then refluxed for 5 h to complete rearrangement to the heterocycle. Workup and purification by SiO_{2} chromatography provided $\mathbf{3 m}$ in 62% yield.

Table 2. Pyridone-Based Heteroaromatics by Pd-Catalyzed Coupling-Rearrangement with 2-(Tri-n-butylstannyl)azaheteroaromatics

entry	R^{1}	R^{2}	Z	R^{3}	R^{4}	compd no., yield (\%)
$\mathbf{1}$	Me	i-PrO	$\mathrm{CH}=\mathrm{CH}$	H	H	$\mathbf{3 m}, 62$
2	Me	Ph	$\mathrm{CH}=\mathrm{CH}$	H	H	$\mathbf{3 n}, 42$
3	Et	Et	$\mathrm{CH}=\mathrm{CH}$	H	H	$\mathbf{3 o}, 34$
$\mathbf{4}$	$n-\mathrm{Bu}$	Me	$\mathrm{CH}=\mathrm{CH}$	H	H	$\mathbf{3 p}, 31$
5	Ph	i-PrO	$\mathrm{CH}=\mathrm{CH}$	H	H	$\mathbf{3 q}, 10$
6	Me	i-PrO	S	benzo	$\mathbf{3 r}, 44$	
7	Me	Ph	S	benzo	$\mathbf{3 s}, 58$	
8	Et	Et	S	benzo	$\mathbf{3 t}, 34$	

This process proved to be general for the cross-coupling and subsequent rearrangement of a variety of 4-chlorocyclobutenones with 2 -(tri- n-butylstannyl)pyridine and provided moderate yields of the desired quinolizin-4-ones in most cases (Table 2, entries 1-5). 2,2'-Bipyridine, derived from oxidative homocoupling of 2 -(tri- n-butylstannyl)pyridine, was formed to varying degrees (17 to 53% yield based on 2 -(tri- n-butylstannyl)pyridine) in all of these coupling reactions. ${ }^{35}$ In the case of 4 -chloro-3-isopropoxy-2-phenyl-2-cyclobutenone the coupling did not proceed as expected, and provided only 10% of the desired 2 -isopropoxy-3-phenylquinolizin-4-one, 3q. The major products were $2,2^{\prime}$-bipyridine (53%), the reduction product 3-isopropoxy-2-phenyl-2-cyclobutenone (41\%) and an unusual spiro compound (12%) that was first identified in another project and will be described elsewhere.

The coupling/rearrangement of 4 -chlorocyclobutenones with 2-(tri-n-butylstannyl)benzothiazoles was performed under the same conditions used with 2-tri- n-butylstannylpyridine, described above, to yield 1-oxopyrido[2,1-b]benzothiazoles (Table 2, entries 6-8). These transformations proceeded in acceptable yields without the complication of organostannane homocoupling observed with the pyridine system.

Conclusions

Two new methods for the construction of the quinolizin4 -one and related ring-fused pyridin-5-one systems have been developed. Palladium catalyzed cross-coupling of 2-(tri-n-butylstannyl)azaheteroaromatics with 4 -chlorocyclobutenones allows direct access to these heterocycles, while addition of 2 -lithiated heteroaromatics to cyclobutenediones provides related structures bearing a hydroxy or acetoxy substitutent situated "para" to the pyridone carbonyl group. Overall yields are modest to good and highly substituted heterocyclic ring structures are easily generated.

Experimental Section

Materials and Methods. All reactions were performed under an atmosphere of dry argon or nitrogen in base-washed, flame-dried glassware. Thermolyses were performed under an argon atmosphere in dried argon-sparged solvents. Solvents were dried by distillation under nitrogen from sodium-
(35) 2,2-Bipyridine is formed by a process that concomitantly induces reductive homocoupling of the 4 -chlorocyclobutenone. Unpublished results of Sangho Koo to be published elsewhere.
benzophenone ketyl (THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, dioxane) or from CaH_{2} (1,2-dichloroethane). n-Butyllithium and t-butyllithium solutions were obtained from Aldrich in Sure-Seal* containers and were titrated using diphenylacetic acid as indicator. $\mathrm{Pd}_{2}-$ (dibenzylideneacetone) ${ }_{3}\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ was purchased from Aldrich and used as is.

All thin-layer chromatography was performed using Merck Kieselgel $60 \mathrm{~F}_{254}$ plates with visualization by UV and phosphomolybdic acid stain. Purification by flash SiO_{2} column chromatography was performed using $32-63 \mu \mathrm{~m} \mathrm{SiO} 2$. Melting points are uncorrected and were determined either using recrystallized samples or samples which crystallized during concentration of the chromatography eluents. IR spectra were recorded in solution using KCl or NaCl cells.

Diisopropylsquarate, ${ }^{36}$ 4-chloro-2,3-diethylcyclobutenone, ${ }^{9}$ 4-chloro-3-isopropoxy-2-methylcyclobutenone, ${ }^{12}$ 4-chloro-3-iso-propoxy-2-phenylcyclobutenone, ${ }^{9} 2$ - n-butyl-4-chloro-3-methylcyclobutenone, ${ }^{9} 2$-(tri- n-butylstannyl) pyridine, ${ }^{30,37}$ tris(2 -furyl)phosphine, ${ }^{38}$ dimethylcyclobutenedione, ${ }^{36}$ dibutylcyclobutenedione, ${ }^{12} 3$-isopropoxy-4-phenylcyclobutenedione, ${ }^{36} 3$-isopropoxy-4-methylcyclobutenedione, ${ }^{36} 3$-(N, N-dibenzylamino)-4-methylcyclobutenedione, ${ }^{12}$ 2-bromo-3-methoxypyridine, ${ }^{39}$ and 1-(methoxymethyl)imidazole ${ }^{40}$ were prepared by literature methods.

Nucleophilic Additions to Cyclobutenediones. 3,4-Diethylcyclobutene-1,2-dione. 2,3-Diethyl-4,4-dichlorocyclobutenedione was prepared by a modification of Danheiser's procedure ${ }^{41}$ then hydrolyzed with strong acid to give the cyclobutenedione. 3 -Hexyne ($18.1 \mathrm{~mL}, 159 \mathrm{mmol}, 1.00$ equiv) was added to a slurry of zinc-copper couple ($30.8 \mathrm{~g}, 240$ mmol, 1.51 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ under argon. A solution of trichloroacetyl chloride ($35.0 \mathrm{~mL}, 314 \mathrm{mmol}, 1.97$ equiv) in dry DME (100 mL) was added dropwise. The reaction was stirred overnight at room temperature to give a dark brown slurry. The slurry was filtered through Celite, rinsing with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined $\mathrm{Et}_{2} \mathrm{O}$ layers were washed once with 0.5 N HCl and three times with 0.5 N NaOH , then once with saturated aq NaCl . The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through a pad of SiO_{2}, then concentrated to give a brown oil which was distilled (Kuglrohr distillation, $80^{\circ} \mathrm{C}, 1.25 \mathrm{mmHg}$) to give a clear colorless liquid. The liquid was added dropwise to 80 mL of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ which had been cooled to $0^{\circ} \mathrm{C}$. The reaction was stirred for 6 h while warming slowly to room temperature. The mixture was poured into ice and extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aq NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a brown oil. The crude product was distilled (Kuglrohr distillation, bp $65^{\circ} \mathrm{C}, 0.05$ $\mathrm{mmHg})$ to give $10.7 \mathrm{~g}(77.4 \mathrm{mmol}, 49 \%$) of 3,4 -diethylcyclo-butene-1,2-dione as a yellow oil. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1789$ (s), 1770 (s), 1595 (s). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 2.76$ (q, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75.5 \mathrm{MHz}): \delta 203.1(2 \mathrm{C}), 199.6(2 \mathrm{C}), 20.0(2 \mathrm{C}), 10.5(2 \mathrm{C})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 69.55; H, 7.30; O, 23.16. Found: C, 69.40; H, 7.29 .

1-Acetoxy-2,3-diethylquinolizin-4-one, 3a. 2-Lithiopyridine was generated by lithium halogen exchange. ${ }^{30} 2$-Bromopyridine ($0.25 \mathrm{~mL}, 2.62 \mathrm{mmol}, 1.20$ equiv, Aldrich) was dissolved in dry THF (5 mL) under N_{2} and cooled to $-78{ }^{\circ} \mathrm{C}$. n-BuLi in hexane ($2.1 \mathrm{~mL}, 1.24 \mathrm{M}, 2.6 \mathrm{mmol}, 1.19$ equiv) was added dropwise and the reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h . 3,4-Diethylcyclobutene-1,2-dione ($0.302 \mathrm{~g}, 2.19$ mmol, 1.00 equiv) was dissolved in dry THF (15 mL) under N_{2} and cooled to $-78^{\circ} \mathrm{C}$. The pyridine reaction mixture was added to the dione solution via cannula and stirred at $-78^{\circ} \mathrm{C}$

[^4]for 25 min , then acetic anhydride ($0.412 \mathrm{~mL}, 4.37 \mathrm{mmol}, 2.00$ equiv) was added and the mixture was stirred for 1.5 h . The reaction mixture was quenched with saturated aq NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a brown oil. Two products were isolated by flash chromatography ($\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}$ column, 20% EtOAc/hexanes). The lower R_{f} compound, 4-acetoxy-2,3-diethyl-4-(2-pyridyl)-2-cyclobutenone, 2a, was isolated as a brown oil ($0.227 \mathrm{~g}, 0.88 \mathrm{mmol}, 40 \%$). $\mathrm{TLC}\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes, $\left.R_{f}=0.20\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}\right.$, cm^{-1}): 1782 (s), 1773 (s), 1647 (w), 1588 (w). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz): $\delta 8.52(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}$ of app $\mathrm{t}, J=$ $1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (m, 1 H), 2.70 ($\mathrm{m}, 2 \mathrm{H}$), 2.34 ($\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14 ($\mathrm{s}, 3 \mathrm{H}$), 1.19 (t, $J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.16$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75.5\right.$ MHz): $\delta 186.2,176.3,169.7,157.7,155.3,149.1,136.5,122.8$, 120.6, 101.0, 21.8, 21.3, 17.4, 11.4, 11.3. HRMS (EI) caled for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}: 259.1208$. Found: 259.1208.

In addition to the major product reported above, a higher R_{f} compound, identified as the 1,4 -addition product 2 -acetoxy-3,4-diethyl-4-(2-pyridyl)-2-cyclobutenone, $2 \mathbf{a}^{\prime}$, was isolated as a yellow/brown oil ($0.060 \mathrm{~g}, 0.23 \mathrm{mmol}, 11 \%$). TLC ($\mathrm{SiO}_{2}, 30 \%$ EtOAc/hexanes, $\left.R_{f}=0.35\right)$. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1769(\mathrm{~s})$, 1744 (s), 1629 (m), $1589(\mathrm{w}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ 8.52 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d of app $\mathrm{t}, J=1.5,7.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.51(\mathrm{~m}, 2$ $\mathrm{H}), 2.30-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 187.3$, $170.9,166.5,159.6,149.2,140.5,136.4,122.0,121.3,69.5,24.8$, 21.4, 20.2, 10.5, 9.9. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}: 259.1208$. Found: 259.1208.

The 1,2 -addition product, $\mathbf{2 a}$, was thermally rearranged to 1 -acetoxy-2,3-diethylquinolizin-4-one, 3a. A solution of $2 \mathbf{a}$ ($0.172 \mathrm{~g}, 0.66 \mathrm{mmol}$) in dry toluene (5 mL) was sparged with N_{2} and heated at $100^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under vacuum and the resulting black oil was purified by flash chromatography ($\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}$ column, $50 \% \mathrm{EtOAc}$ hexanes) to yield 3a as a yellow solid ($0.148 \mathrm{~g}, 0.57 \mathrm{mmol}$, 86%). TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.32$); mp 114$115{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right)$: $1763(\mathrm{~m})$, $1651(\mathrm{~m}), 1628(\mathrm{~s}), 1549(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ 9.03 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.81(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3$ H), 1.22 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): δ 169.7, 156.6, 145.2, 132.4, 128.1 , $126.8,125.8,122.3,118.8,113.9,21.3,21.0,20.4,13.8,13.5$. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: 259.1208 . Found: 259.1208. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 69.48 ; \mathrm{H}, 6.61 ; \mathrm{N}, 5.40 ; \mathrm{O}$, 18.51. Found: C, 69.27 ; H, 6.58 ; N, 5.35 .

Repetition of this procedure, without purification of the intermediate 2a before thermolysis, and subsequent purification by flash silica chromatography yielded $0.230 \mathrm{~g}(41 \%)$ of $\mathbf{3 a}$ and $0.036 \mathrm{mg}(6 \%)$ of $\mathbf{2 a}$.

1-Acetoxy-2,3-di-n-butylquinolizin-4-one, 3b. 2-Lithiopyridine was generated from 2-bromopyridine $(0.383 \mathrm{~mL}, 4.02$ mmol, 1.10 equiv, Aldrich) in dry THF (10 mL) under argon at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h using n - BuLi in hexanes ($3.09 \mathrm{~mL}, 1.30$ $\mathrm{M}, 4.02 \mathrm{mmol}, 1.10$ equiv). This solution was cannulated into 3,4 -di- n-butylcyclobutene-1,2-dione ($0.709 \mathrm{~g}, 3.65 \mathrm{mmol}, 1.00$ equiv) in dry THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$ and after 45 min acetic anhydride ($0.689 \mathrm{~mL}, 7.30 \mathrm{mmol}, 2.00$ equiv) was added. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and 10 min at room temperature, then subjected to workup as for 2a. The crude oil was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 7.5 h . The solvent was removed under vacuum and the crude material was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}$ column, gradient $30 \% \mathrm{EtOAc} /$ hexanes to EtOAc) to yield $\mathbf{3 b}$ as a green solid ($0.574 \mathrm{~g}, 1.82$ $\mathrm{mmol}, 50 \%$). TLC ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.45$); mp $90-92{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1763(\mathrm{~m})$, $1652(\mathrm{~m}), 1627(\mathrm{~s}), 1550(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): \delta$ 9.13 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$) $7.26-7.18$ (m, 2 H), 6.87 (d of app t, $J=1.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (m, 2 H), 2.56 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$), $2.15(\mathrm{~s}, 3$ H), $1.63-1.40(\mathrm{~m}, 8 \mathrm{H}), 0.98$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $0.96(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 169.5,156.6$, $144.2,132.2,127.9,126.6,125.9,121.2,118.8,113.8,31.4,31.1$, $27.8,27.7,23.0,22.9,20.3,13.8,13.6$. Anal. Calcd for
$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 72.35 ; \mathrm{H}, 7.99 ; \mathrm{O}, 15.22 ; \mathrm{N}, 4.44$. Found: C, 72.46; H, 7.96; N, 4.38.

Two regioisomeric products were isolated during chromatography. 2-Acetoxy-3,4-di-n-butyl-4-(2-pyridyl)-2-cyclobutenone, $\mathbf{2} \mathbf{b}^{\prime}$, the cyclobutenone intermediate formed by $1,4-$ addition of 2 -lithiopyridine to the dione, was isolated as a brown oil ($78 \mathrm{mg}, 0.25 \mathrm{mmol}, 7 \%$). TLC ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.66$). IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1778$ (s), 1648 (m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ; \delta 8.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (ddd, $J=7.7,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16(\mathrm{dd}, J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3$ H), 2.28-2.15 (m, 1 H), 2.11-1.98 (m, 1 H), $1.66-1.51$ ($\mathrm{m}, 4$ $\mathrm{H}), 1.33-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 170.9,166.5$, $159.2,148.8,148.6,140.7,137.1,122.2,121.6,69.4,24.8$ (2C), 21.4 (2C), 20.2, 10.5 (2C), 10.0 (2C).

Additionally, 3 -acetoxy-1,2-di- n-butylquinolizin-4-one, $\mathbf{3 b}^{\prime}$, the quinolizinone regioisomer formed by thermal rearrangement of the 1,4 -addition product, was isolated as a green solid $(15 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \%)$. TLC $\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAchexanes, R_{f} $=0.08$). ${ }^{1} \mathrm{H}$ NMR (dioxane- $d_{8}, 300 \mathrm{MHz}$): $\delta 8.96(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.61(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d of app $\mathrm{t}, J=1.1$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\operatorname{appt} \mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 2 \mathrm{H})$, $2.62-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 8 \mathrm{H}), 0.94(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

To further confirm the identification of the regioisomeric products a sample of 2 -acetoxy-3,4-di- n-butyl-4-(2-pyridyl)-2cyclobutenone, $2 \mathbf{b}^{\prime}$, was subjected to thermolysis in dioxane in a sealed NMR tube ($140{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}$) to give 3 -acetoxy-1,2-di-n-butylquinolizin-4-one, $3 \mathbf{b}^{\prime}$, as the only product detectable by ${ }^{1} \mathrm{H}$ NMR.

1-Acetoxy-2-isopropoxy-3-methylquinolizin-4-one, 3c. Following the procedure for 3 b , 2-bromopyridine (0.204 mL , $2.14 \mathrm{mmol}, 1.10$ equiv, Aldrich) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was treated dropwise with $n-\mathrm{BuLi}$ in pentane ($1.53 \mathrm{~mL}, 1.40 \mathrm{M}, 2.14 \mathrm{mmol}$, 1.10 equiv) at $-78^{\circ} \mathrm{C}$. After 1.2 h , the solution was cannulated into 3 -isopropoxy-4-methylcyclobutene-1,2-dione ($0.30 \mathrm{~g}, 1.95$ $\mathrm{mmol}, 1.00$ equiv) in THF (30 mL) at $-78^{\circ} \mathrm{C}$. After 25 min , acetic anhydride ($0.275 \mathrm{~mL}, 2.92 \mathrm{mmol}, 1.50$ equiv) was added, and after 30 min workup gave a black oil that was dissolved in dry dioxane (8 mL), sparged with argon and heated at 90 ${ }^{\circ} \mathrm{C}$ for 3 h . Removal of solvent and flash chromatography ($\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}$ column, $70 \% \mathrm{EtOAc} /$ hexanes) gave 3c as a dark green solid ($0.267 \mathrm{~g}, 0.97 \mathrm{mmol}, 50 \%$). TLC ($\mathrm{SiO}_{2}, 70 \%$ EtOAc/hexanes, $R_{f}=0.50$); mp 93-94 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{KCl}, \mathrm{cm}^{-1}$): $1778(\mathrm{~m}), 1653(\mathrm{~s}), 1627(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta 9.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22 (dd, $J=7.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (ddd, $J=1.0,7.0,7.5 \mathrm{~Hz}$, 1 H), 4.49 (sept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), $2.28(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ 168.7, 158.4, 156.2, 133.1, 128.4, 126.7, 122.1, 118.4, 113.5, 111.5, 77.4, 22.6 (2C), 20.4, 11.5. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$: C, 65.44; H, 6.22; O, 23.25; N, 5.09. Found: C, 65.39; H, 6.19.

A trace amount of a second regioisomer was isolated during chromatography ($<1 \%$ yield). Though isolated in an amount too small to allow rigorous identification, this compound might be the quinolizinone product formed by 1,4 -addition of 2 -lithiopyridine to the cyclobutenedione followed by thermal rearrangement. TLC ($\mathrm{SiO}_{2}, 70 \%$ EtOAc/hexanes, $R_{f}=0.20$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1765(\mathrm{~m}), 1657(\mathrm{~s}), 1633(\mathrm{~s}), 1566(\mathrm{~m})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}$ of appar $\mathrm{t}, J=6.9$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30$ (s, 3 H), $1.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}$).

1-Acetoxy-2-isopropoxy-3-phenylquinolizin-4-one, 3d. Following the procedure for $\mathbf{3 b}, 2$-bromopyridine $(0.146 \mathrm{~mL}$, $1.53 \mathrm{mmol}, 1.10$ equiv, Aldrich) in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL) was treated dropwise with $n-\mathrm{BuLi}$ in pentane $(1.41 \mathrm{~mL}, 1.08 \mathrm{M}, 1.52 \mathrm{mmol}$, 1.09 equiv) at $-78^{\circ} \mathrm{C}$. After 1.5 h , the solution was cannulated into 3 -isopropoxy-4-phenylcyclobutene-1,2-dione ($0.30 \mathrm{~g}, 1.39$ mmol, 1.00 equiv) in THF (30 mL) at $-78^{\circ} \mathrm{C}$. After 20 min , acetic anhydride ($0.196 \mathrm{~mL}, 2.08 \mathrm{mmol}, 1.50$ equiv) was added, and after 20 min workup gave a brown oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at 90 ${ }^{\circ} \mathrm{C}$ for 5 h . Removal of solvent and flash chromatography ($\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}$ column, $70 \% \mathrm{EtOAc} /$ hexanes) gave 3d as a
yellow solid ($0.279 \mathrm{~g}, 0.83 \mathrm{mmol}, 60 \%$). TLC ($\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc}$ hexanes, $\left.R_{f}=0.50\right)$; mp $116-118{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) ; 1773(\mathrm{~m}), 1653(\mathrm{~s}), 1626(\mathrm{~s}), 1548(\mathrm{~m})$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $\delta 9.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\operatorname{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\operatorname{app} \mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.90 (d of app $\mathrm{t}, J=1.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 169.0,157.6,156.2,134.8$, $134.0,130.9$ (2C), 129.9, 128.0 (2C), 127.6, 127.3, 122.5, 118.7, $113.8,113.4,76.1,22.2(2 \mathrm{C}), 20.4$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 71.20 ; \mathrm{H}, 5.68 ; \mathrm{O}, 18.97 ; \mathrm{N}, 4.15$. Found: C, 71.04; H, 5.75; N, 4.13 .

1-Hydroxy-2-isopropoxy-3-phenylquinolizin-4-one, 3e. Following the procedure for $3 \mathrm{~b}, 2$-bromopyridine $(0.147 \mathrm{~mL}$, $1.54 \mathrm{mmol}, 1.11$ equiv, Aldrich) in THF (5 mL) was treated dropwise with t-BuLi in pentane ($1.62 \mathrm{~mL}, 1.90 \mathrm{M}, 3.08 \mathrm{mmol}$, 2.22 equiv) at $-78^{\circ} \mathrm{C}$. After 1.5 h , the solution was cannulated into 3 -isopropoxy-4-phenylcyclobutene-1,2-dione ($0.30 \mathrm{~g}, 1.39$ $\mathrm{mmol}, 1.00$ equiv) in THF (5 mL) at $-78^{\circ} \mathrm{C}$. After 20 min , saturated aq NaHCO_{3} was added and workup as for $3 \mathbf{3}$, above, gave a brown oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 2 h . Removal of solvent gave a crude brown solid that was purified by recrystallization from EtOAc/hexanes to yield 3e as a gold solid ($0.197 \mathrm{~g}, 0.67 \mathrm{mmol}, 48 \%$). TLC ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.08$); mp $160{ }^{\circ} \mathrm{C}$ w/decomp (EtOAc / hexanes). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1650(\mathrm{~s}), 1624(\mathrm{~s}), 1560(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 360 \mathrm{MHz}\right.$): $\delta 8.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.90-7.25(\mathrm{~m}, 7 \mathrm{H})$, 6.85 (br s, 1 H), 5.58 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 3.87 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 1.05 (d, $J=$ $6.1 \mathrm{~Hz}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 73.20 ; \mathrm{H}, 5.80$; O, 16.25; N, 4.74. Found: C, 73.00; H, 5.91; N, 4.71.

The structure identification was confirmed by acetylation. 1 -Hydroxy-2-isopropoxy-3-phenylquinolizin-4-one, $3 \mathrm{e}(60 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.845 \mathrm{~mL}, 0.61 \mathrm{mmol}, 3.0$ equiv) and acetic anhydride ($0.383 \mathrm{~mL}, 0.41 \mathrm{mmol}, 2.0$ equiv) and stirred at room temperature for 4 h . The reaction mixture was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a brown oil. The crude material was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}$ column, $50 \% \mathrm{EtOAc} /$ hexanes) to give 65 mg (94%) of $\mathbf{3 d}$ as a yellow solid, fully characterized above.

1-Acetoxy-2-isopropoxy-9-methoxy-3-phenylquinolizin-4-one, 3f. 2-Bromo-3-methoxypyridine ${ }^{39}$ ($0.483 \mathrm{~g}, 2.57 \mathrm{mmol}$, 1.11 equiv) in THF (8 mL) was treated dropwise with $t-\mathrm{BuLi}$ in pentane ($2.71 \mathrm{~mL}, 1.90 \mathrm{M}, 5.15 \mathrm{mmol}, 2.23$ equiv) at -78 ${ }^{\circ} \mathrm{C}$. After 1 h , this solution was added via cannula to 3 -isopropoxy-4-phenylcyclobutene-1,2-dione ($0.50 \mathrm{~g}, 2.31 \mathrm{mmol}$, 1.00 equiv) in THF (12 mL) at $-78^{\circ} \mathrm{C}$. After 30 min , acetic anhydride ($0.485 \mathrm{~mL}, 5.14 \mathrm{mmol}, 2.23$ equiv) was added, and after 30 min workup as for $\mathbf{3 b}$, above, gave a brown oil that was dissolved in dry dioxane (8 mL), sparged with argon and heated at $100^{\circ} \mathrm{C}$ for 20 min . Removal of solvent and flash chromatography $\left(\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}\right.$ column, $80 \% \mathrm{EtOAc} /$ hexanes) gave $3 f$ as a yellow solid ($0.250 \mathrm{~g}, 0.68 \mathrm{mmol}, 29 \%$). TLC ($\mathrm{SiO}_{2}, 80 \%$ EtOAc/hexanes, $R_{f}=0.49$); mp $172-174{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes). $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1765$ (m), 1649 (m), 1633 (s), 1572 (w). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $\delta 8.80$ (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}$, 2 H), 7.30 (app t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.76(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1$ H), 6.56 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 $(\mathrm{s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5$ MHz): $\delta 169.4,157.5,156.5,152.4,133.8,130.7$ (2C), 129.5, 127.8 (2C), 127.3, 122.9, 120.5, 114.5, 112.6, 106.2, 76.2, 56.6, 22.2 (2C), 20.3. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}$: 367.1419. Found: 367.1419 . Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}$: C, $68.65 ; \mathrm{H}$, 5.76; O, 21.77; N, 3.81. Found: C, 68.49; H, 5.78.

8-Acetoxy-6,7-diethylthiazolo[3,2-a] pyridin-5-one, 3g. 2-Bromothiazole ($0.215 \mathrm{~mL}, 2.39 \mathrm{mmol}, 1.10$ equiv, Aldrich) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was treated dropwise with n - BuLi in hexane ($1.59 \mathrm{~mL}, 1.50 \mathrm{M}, 2.39 \mathrm{mmol}, 1.10$ equiv) at -78 ${ }^{\circ} \mathrm{C}$. After 1.5 h , the black heterogeneous reaction mixture was added via cannula to 3,4 -diethylcyclobutene- 1,2 -dione (0.30 g , $2.17 \mathrm{mmol}, 1.00$ equiv) in THF (20 mL) at $-78^{\circ} \mathrm{C}$. After 40 min , acetic anhydride ($0.410 \mathrm{~mL}, 4.34 \mathrm{mmol}, 2.0$ equiv) was added, and after 1 h workup as for $\mathbf{3 b}$, above, gave a brown
oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 4 h . Removal of solvent and flash chromatography ($\mathrm{SiO}_{2}, 2 \times 15 \mathrm{~cm}$ column, $50 \% \mathrm{EtOAc} /$ hexanes) gave 3 g as a brown solid ($0.254 \mathrm{~g}, 0.96 \mathrm{mmol}, 44 \%$). TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.26$); mp $63-66{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes). IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right)$: 1771 (m), $1645(\mathrm{~m})$, $1582(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): \delta 8.08(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ ($\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 168.1$, $158.1,145.3,136.4,126.7,124.8,122.7,110.5,21.0,20.3$ (2C), 13.7, 13.6. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NSO}_{3}$: 265.0772. Found: 265.0772.
4-Acetoxy-2,3-dimethyl-1-oxopyrido[2,1-b]benzothiazole, 3 h . Benzothiazole ($0.331 \mathrm{~mL}, 3.03 \mathrm{mmol}, 1.11$ equiv, Aldrich) in THF (7 mL) at $-78^{\circ} \mathrm{C}$ was treated dropwise with $n-\mathrm{BuLi}$ in pentane ($2.01 \mathrm{~mL}, 1.51 \mathrm{M}, 3.04 \mathrm{mmol}, 1.12$ equiv) at $-78{ }^{\circ} \mathrm{C}$. After 1.2 h , this solution was added via cannula to 3,4-dimethylcyclobutene-1,2-dione ($0.30 \mathrm{~g}, 2.72 \mathrm{mmol}, 1.00$ equiv) in THF (5 mL) at $-78^{\circ} \mathrm{C}$. After 25 min , acetic anhydride ($0.571 \mathrm{~mL}, 6.05 \mathrm{mmol}, 2.22$ equiv) was added and after 30 min workup as for $\mathbf{3 b}$, above, gave a yellow solid that was dissolved in dry dioxane (8 mL), sparged with argon and heated to $95{ }^{\circ} \mathrm{C}$ for 3 h . Removal of solvent gave a crude brown solid that was purified by recrystallization from EtOAc/ hexanes to yield $\mathbf{3 h}$ as a tan solid ($0.439 \mathrm{~g}, 1.53 \mathrm{mmol}, 56 \%$). TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.47$); $\mathrm{mp} 185-187^{\circ} \mathrm{C}$ (EtOAc/hexanes). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1772(\mathrm{~m}), 1653(\mathrm{~s})$, 1597 (s). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 9.25(\mathrm{dd}, J=1.1,8.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.55 (dd, $J=1.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (d of app $\mathrm{t}, J=$ $1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (d of app $\mathrm{t}, J=1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 $(\mathrm{s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5$ MHz): $\delta 168.4,161.2,140.0,139.2,127.3,126.4$ (2C), 125.8 , 121.4 (2C), 120.6, 120.5, 20.3, 13.9, 12.9. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}: 287.0615$. Found: 287.0616.

4-Acetoxy-2,3-diethyl-1-oxopyrido[2,1-b]benzothiazole, 3i. Benzothiazole ($0.261 \mathrm{~mL}, 2.39 \mathrm{mmol}, 1.10$ equiv, Aldrich) in THF (7 mL) at $-78^{\circ} \mathrm{C}$ was treated with $n-\mathrm{BuLi}$ in pentane ($1.71 \mathrm{~mL}, 1.40 \mathrm{M}, 2.39 \mathrm{mmol}, 1.10$ equiv) at $-78^{\circ} \mathrm{C}$. After 1.2 h , this solution was added via cannula to $3,4-$ diethylcyclobutene-1,2-dione ($0.30 \mathrm{~g}, 2.17 \mathrm{mmol}, 1.00$ equiv) in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 25 min , acetic anhydride ($0.307 \mathrm{~mL}, 3.25 \mathrm{mmol}, 1.50$ equiv) was added, and after 20 min workup as for $\mathbf{3 b}$, above, gave an orange oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 3 h . Removal of solvent gave a crude brown solid that was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ /hexanes to yield 3 i as a brown solid ($0.368 \mathrm{~g}, 1.17 \mathrm{mmol}, 54 \%$). TLC ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.55$); mp $163-165{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}$): 1771 (s), 1653 (s), 1595 (s). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $\delta 9.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (dd, $J=7.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (dd, $J=7.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.39 ($\mathrm{s}, 3 \mathrm{H}$), $1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 168.3,161.1$, $145.0,139.0,134.8,126.8,126.2,125.9,125.7,121.3,121.2$, 120.4, 21.2, 20.4, 20.3, 13.7, 13.6. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}$ NS: C, $64.74 ; \mathrm{H}, 5.43 ; \mathrm{O}, 15.22 ; \mathrm{N}, 4.44 ; \mathrm{S}, 10.17$. Found: C, 64.49; H, 5.48; N, 4.40 .

8-Acetoxy-6,7-diethyl-1-methylimidazo[1,2-a]pyridin5 -one, 3 j. 1-Methylimidazole ($0.32 \mathrm{~mL}, 4.01 \mathrm{mmol}, 1.11$ equiv, Aldrich) in THF (10 mL) was treated dropwise with $n-\mathrm{BuLi}$ in pentane ($2.96 \mathrm{~mL}, 1.36 \mathrm{M}, 4.03 \mathrm{mmol}, 1.11$ equiv) at -78 ${ }^{\circ} \mathrm{C}$. After 1.7 h , this solution was added via cannula to 3,4 -diethylcyclobutene-1,2-dione ($0.50 \mathrm{~g}, 3.62 \mathrm{mmol}, 1.00$ equiv) in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 1 h , acetic anhydride (0.759 $\mathrm{mL}, 8.04 \mathrm{mmol}, 2.22$ equiv) was added, and after 30 min workup as for 3b, above, gave an orange oil that was dissolved in dry 1,2 -dichloroethane (5 mL), sparged with argon and refluxed at $85{ }^{\circ} \mathrm{C}$ for 4 h . Removal of solvent and flash chromatography ($\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}$ column, $15 \% \mathrm{MeOH} / \mathrm{EtOAc}$) gave 3 j as a brown solid ($0.616 \mathrm{~g}, 2.35 \mathrm{mmol}, 65 \%$). TLC (SiO_{2}, $\left.15 \% \mathrm{MeOH} / \mathrm{EtOAc}, R_{f}=0.40\right) ; \mathrm{mp} 111-114{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1769(\mathrm{~m}), 1656(\mathrm{~s}), 1583(\mathrm{~s}), 1554(\mathrm{~s})$, 1521 (s). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $\delta 7.65$ (d, $J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{q}, J=7.2$
$\mathrm{Hz}, 2 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ 171.1, 154.5, 144.4, 133.3, 121.6, 114.3, 112.1, 108.4, 34.4, 20.9, 20.5, 19.9, 14.2 (2C). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$: C, 64.11 ; $\mathrm{H}, 6.92 ; \mathrm{O}, 18.30 ; \mathrm{N}, 10.68$. Found: C, $63.85 ; \mathrm{H}, 6.81 ; \mathrm{N}, 10.47$.

8-Acetoxy-7-(N, N-dibenzylamino)-1,6-dimethylimidazo-[1,2-a]pyridin-5-one, 3k. 1-Methylimidazole ($0.093 \mathrm{~mL}, 1.17$ mmol, 1.89 equiv, Aldrich) in THF (5 mL) was treated dropwise with n-BuLi in pentane ($0.755 \mathrm{~mL}, 1.55 \mathrm{M}, 1.17 \mathrm{mmol}, 1.89$ equiv) at $-78^{\circ} \mathrm{C}$. After 1.25 h , this solution was added to 3 -(N, N-dibenzylamino)-4-methylcyclobutene-1,2-dione (0.18 g , $0.62 \mathrm{mmol}, 1.00$ equiv) in THF (20 mL) at $-78^{\circ} \mathrm{C}$. After 45 min , acetic anhydride ($0.170 \mathrm{~mL}, 1.80 \mathrm{mmol}, 2.90$ equiv) and pyridine ($0.160 \mathrm{~mL}, 1.98 \mathrm{mmol}, 3.19$ equiv) were added, and after 1 h at $-78^{\circ} \mathrm{C}$ and 10 min at room temperature workup as for $\mathbf{3 b}$, above, gave a brown oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 4 h. Removal of solvent and flash chromatography $\left(\mathrm{SiO}_{2}, 2 \times\right.$ 15 cm column, gradient EtOAc to $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) gave $\mathbf{3 k}$ as a tan solid ($0.164 \mathrm{~g}, 0.39 \mathrm{mmol}, 63 \%$). TLC ($\mathrm{SiO}_{2}, 10 \%$ $\left.\mathrm{MeOH} / \mathrm{EtOAc}, R_{f}=0.24\right)$; mp $151-153{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (CH_{2-} $\mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}$): $1770(\mathrm{~m}), 1652$ (s), 1582 (s), 1549 (s). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): \delta 7.68(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}$, $10 \mathrm{H}), 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~B}$ of AB quartet, $J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (A of AB quartet, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.65 (s, 3 H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{3}{ }^{3} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75.5\right.}$ MHz): $\delta 170.7,155.4,151.6,138.3$ (2C), 136.1 (4C), 128.9 (4 C), 128.2 (2C), 127.2, 121.8, 113.1, 108.1, 103.8, 55.4 (2C), 34.3, 20.4, 13.3. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{3}: \mathrm{C}, 72.27 ; \mathrm{H}, 6.06 ; \mathrm{O}$, 11.55; N, 10.11. Found: C, 72.13 ; H, 6.12; N, 10.09 .

Also isolated by chromatography was 39 mg (0.11 mmol , 18%) of a \tan solid with a higher R_{f} which was identified as 2-methyl-3-(dibenzylamino)-4-(1-methylimidazol-2-yl)-4-hydroxybutyric acid γ-lactone, 6. This compound resulted from thermal rearrangement of the unprotected 4 -hydroxy-4-(1-methylimidazol-2-yl)-3-(dibenzylamino)-2-methyl cyclobutenedione, $\mathbf{2} \mathbf{k}^{\prime}$. This was confirmed by isolating a sample of $\mathbf{2 k} \mathbf{k}^{\prime}$ and subjecting it to thermolysis at $90^{\circ} \mathrm{C}$ in dioxane for 4 h , producing exclusively the 5 -membered ring lactone product, 6. TLC ($\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH} / \mathrm{EtOAc}, R_{f}=0.67$); $\mathrm{mp} 149-150^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right): 1746$ (w), 1593 (s), 1570 (s). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $\delta 7.39-7.23$ ($\mathrm{m}, 10 \mathrm{H}$), 6.98 (d, J $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.71-4.51(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 172.0,144.6,135.7$ (2C), $135.0,129.0$ (2C), 128.9 (2C), 128.5 (4 C), 127.9, 127.7, 126.9 (2C), 123.0 , 88.7, 54.6, 51.3, 34.2, 7.5. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{3}$: C, 73.97; H, 6.21; O, 8.57; N, 11.25. Found: C, 73.73; H, 6.22.

8-Acetoxy-7-isopropoxy-6-phenyl-1-(methoxymethyl)imidazo $[1,2-a]$ pyridin-5-one, 31. 1-(Methoxymethyl)imidazole ${ }^{40}$ ($0.20 \mathrm{~g}, 2.08 \mathrm{mmol}, 1.10$ equiv) in THF (5 mL) was treated dropwise with $n-\mathrm{BuLi}$ in pentane ($1.83 \mathrm{~mL}, 1.14 \mathrm{M}$, $2.09 \mathrm{mmol}, 1.11$ equiv) at $-78^{\circ} \mathrm{C}$. After 1.2 h , this solution was added via cannula to 3 -isopropoxy-4-phenylcyclobutene-1,2-dione ($0.409 \mathrm{~g}, 1.89 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) at $-78^{\circ} \mathrm{C}$. After 45 min , acetic anhydride ($0.268 \mathrm{~mL}, 2.84 \mathrm{mmol}$, 1.50 equiv) was added and after 45 min workup as for 3 b , above, gave a yellow oil that was dissolved in dry dioxane (5 mL), sparged with argon and heated at $90^{\circ} \mathrm{C}$ for 4 h . Removal of solvent gave a crude brown solid that was recrystallized from EtOAchexanes to give 31 as an off white solid (0.265 g , $0.72 \mathrm{mmol}, 38 \%$): $\mathrm{mp} 186^{\circ} \mathrm{C} \mathrm{w} /$ decomp ($\mathrm{EtOAc} /$ hexanes). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right)$: $1778(\mathrm{~m}), 1661(\mathrm{~m}), 1591(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (app $\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (app $\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.96 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (br s, 2 H), 3.85 (sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 169.0,157.3,154.6$, $134.4,134.1,131.2$ (2C), 127.7 (2C), 126.4, 121.1, 112.2, 109.4, 107.2, 78.8, 76.0, 56.1, 22.2 (2C), 20.6. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2}$: C, 64.85; H, 5.99; $\mathrm{O}, 21.60 ; \mathrm{N}, 7.56$. Found: C, 64.74; H, 6.02; N, 7.58.

Stannylazaheteroaromatic Cross-Couplings with 4-Chlorocyclobutenones. 4-Chloro-2-methyl-3-phenyl-2cyclobutenone. A $250-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirring bar, two glass
stoppers, and a $125-\mathrm{mL}$ pressure-equalizing addition funnel fitted with a N_{2} inlet adapter. The flask was charged with $\mathrm{Zn}-\mathrm{Cu}$ couple ($5.11 \mathrm{~g}, 78.17 \mathrm{mmol}, 3.00$ equiv), 40 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 1-phenyl-1-propyne ($3.029 \mathrm{~g}, 26.08 \mathrm{mmol}, 1.00$ equiv). The dropping funnel was charged with a solution of dichloroacetyl chloride ($7.68 \mathrm{~g}, 52.10 \mathrm{mmol}, 2.00$ equiv) in 15 mL of distilled DME, and this solution was then added dropwise to the reaction mixture over 1 h . After 48 h , the resulting brown mixture was filtered through a sintered-glass Buchner funnel and the black solid was washed with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed successively with 50 mL each of ice-cold 0.5 N HCl , ice-cold $5 \% \mathrm{NaOH}$ and saturated NaCl solution, dried over $\mathrm{MgSO}_{4}(20 \mathrm{~g})$ and then concentrated to a heterogeneous mixture which was purified by flash chromatography ($\mathrm{SiO}_{2}, 5 \times 20 \mathrm{~cm}$ column, $9 \% \mathrm{EtOAc} /$ hexanes) to afford 4-chloro-2-methyl-3-phenylcyclobutenone as a white solid (2.074 $\mathrm{g}, 10.77 \mathrm{mmol}, 41 \%)$. TLC ($\mathrm{SiO}_{2}, 90 \%$ EtOAc/hexanes, $R_{f}=$ $0.15)$; mp $80-81{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}\right.$, $\left.\mathrm{cm}^{-1}\right): 1767,1616,1569 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.77-$ $7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 3 \mathrm{H}), 5.62(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ 184.4, 165.8, 145.3, 132.0, 129.6, 129.4, 129.2, 67.2, 9.7. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{OCl}: \mathrm{C}, 68.58 ; \mathrm{H}, 4.71 ; \mathrm{O}, 8.31 ; \mathrm{Cl}, 18.40$. Found: C, 68.24; H, 4.63.

2-(Tri-n-butylstannyl)benzothiazole. An ether solution (30 mL) of $n-\mathrm{BuLi}$ in hexanes ($4.84 \mathrm{~mL}, 2.40 \mathrm{M}, 11.62 \mathrm{mmol}$, 1.00 equiv) under N_{2} was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated dropwise with an ether solution (5 mL) of benzothiazole (1.57 $\mathrm{g}, 11.61 \mathrm{mmol}, 1.00$ equiv). After 8 h the reaction mixture was treated slowly with $n-\mathrm{Bu}_{3} \mathrm{SnCl}(3.78 \mathrm{~g}, 11.61 \mathrm{mmol}, 1.00$ equiv). After 90 min , the solution was warmed to room temperature and the solvent was evaporated under vacuum. Methylcyclohexane (80 mL) was added to this mixture and the precipitate was filtered immediately. The eluent was concentrated to a orange oil and distilled (standard distillation, bp $159-162{ }^{\circ} \mathrm{C}, 0.07 \mathrm{mmHg}$) to give 2 -(tri- n-butylstannyl)benzothiazole as a yellow oil ($4.04 \mathrm{~g}, 9.52 \mathrm{mmol}, 82 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): $1466,1377 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 8.16$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=$ $7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.56$ (m, 6 H$), 1.38-1.24(\mathrm{~m}, 12 \mathrm{H}), 0.90-0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 177.4,156.2,136.4,125.3$, 124.4, 122.9, 121.3, 28.9 (3C), 27.3 (3C), 13.6 (3C), 11.3 (3C). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NSSn}: \mathrm{C}, 53.80 ; \mathrm{H}, 7.37$; N, 3.30 ; S, 7.56; $\mathrm{Sn}, 27.98$. Found: C, 53.74 ; H, 7.41.

2-Isopropoxy-3-methylquinolizin-4-one, 3m. A N_{2} sparged toluene (8 mL) solution of 4 -chloro-3-isopropoxy-2-methyl-2-cyclobutenone, ${ }^{12}$ ($175 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) and 2-(tri- n-butylstannyl)pyridine ($442 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.20$ equiv) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(22.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$ and tris $(2-$ furyl)phosphine ($23.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.10$ equiv) was heated under N_{2} at $60^{\circ} \mathrm{C}$ overnight followed by refluxing for 6 h . The mixture was cooled to room temperature and 5% aq KF was added to remove $n-\mathrm{Bu}_{3} \mathrm{SnCl}$. The solution was extracted with 2:1 $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL} \times 3$). The combined organic phases were washed with water ($30 \mathrm{~mL} \times 2$) and brine (30 mL), dried over 10 g of MgSO_{4} and concentrated. The resulting yellowbrown oil was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 20$ cm column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then with 50% EtOAc/hexanes to give 3 m as a yellow-green oil (134 mg , $0.62 \mathrm{mmol}, 62 \%$). TLC ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.19$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1651,1627,1561 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): $\delta 8.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1$ H), 7.14 (dd, $J=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.76(\operatorname{app~t}, J=6.9 \mathrm{~Hz}, 1$ H), $6.25(\mathrm{~s}, 1 \mathrm{H}), 4.67-4.56$ (sept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15(\mathrm{~s}, 3$ $\mathrm{H}), 1.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ $162.3,159.1,140.3,128.4,127.0,124.2,113.0,105.0,90.3,70.7$, 22.2 (2C), 9.7. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: $\mathrm{C}, 71.87$; $\mathrm{H}, 6.96$; $\mathrm{N}, 6.45 ; \mathrm{O}, 14.73$. Found: C, 71.51; H, 7.21; N, 6.73. Also isolated was 28% of $2,2^{\prime}$-bipyridine, mp $71-73^{\circ} \mathrm{C}$ (lit. ${ }^{42,43} 69.5$ ${ }^{\circ} \mathrm{C}$) identified by comparison with literature spectroscopic data.

[^5]3-Methyl-2-phenylquinolizin-4-one, 3n. Following the procedure for 3 m , a solution of 4-chloro-2-methyl-3-phenyl-2cyclobutenone ($116 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.00$ equiv) and 2 -(tri- n butylstannyl)pyridine ($243 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.10$ equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(13.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$ and tris(2 -furyl)phosphine ($13.9 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight and 10 h at reflux gave after workup a red oil that was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \times 20\right.$ cm column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then 50% EtOAc/hexanes to give 3 n as a yellow-green oil ($59 \mathrm{mg}, 0.25$ $\mathrm{mmol}, 42 \%$). TLC ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.33$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1652,1626,1567 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta 9.06$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.20$ (dd, $J=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (d of app t, $J=6.9,1.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$: $\delta 158.7,149.8,140.1,139.0,128.5$ (2C), 128.3 (2C), 127.9, 127.7, 126.7, 125.3, 116.5, 114.4, 104.6, 14.9. Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 81.68 ; \mathrm{H}, 5.57$; N, $5.95 ; \mathrm{O}, 6.80$. Found: C, $81.58 ; \mathrm{H}, 5.61 ; \mathrm{N}, 5.90$. Also isolated was 17% of $2,2^{\prime}$ bipyridine.

2,3-Diethylquinolizin-4-one, 3o. Following the procedure for 3 m , a solution of 4-chloro-2,3-diethyl-2-cyclobutenone ${ }^{9}$ (159 $\mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) and 2 -(tri- n-butylstannyl)pyridine ($442 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.20$ equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(22.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$ and tris(2 -furyl)phosphine ($23.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight then 8 h at reflux gave after workup a solid that was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 20 \mathrm{~cm}$ column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then $50 \% \mathrm{EtOAc} /$ hexanes to give 30 as a yellow solid ($68 \mathrm{mg}, 0.34 \mathrm{mmol}, 34 \%$). TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.40$); mp $86-87{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1650,1624,1563$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta 8.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14 (dd, $J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (d of app $\mathrm{t}, J=1.2,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 158.1,151.4,139.4,127.3$, $126.7,124.8,122.5,113.8,103.6,26.3,20.5,14.7,13.4$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51$; N, 6.96; O, 7.95. Found: C, $77.89 ; \mathrm{H}, 7.57$; N, 6.56 . Also isolated was 22% of 2,2'-bipyridine.

3-n-Butyl-2-methylquinolizin-4-one, 3p. Following the procedure for $\mathbf{3 m}$, a solution of 2-butyl-4-chloro-3-methyl-2cyclobutenone ${ }^{9}$ ($173 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) and 2 -(tri- n butylstannyl)pyridine ($442 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.20$ equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(22.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$ and tris(2 -furyl)phosphine ($23.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight and 8 h at reflux gave after workup a brown oil that was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \times 20\right.$ cm column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then 50% EtOAc/hexanes to give $\mathbf{3 p}$ as a yellow-green oil ($67 \mathrm{mg}, 0.31$ $\mathrm{mmol}, 31 \%)$. TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.39$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1651,1628,1565 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 9.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (dd, $J=8.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}$ of app $\mathrm{t}, J=1.2,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.56-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75.5 MHz): $\delta 157.9,145.9,138.9,127.4,126.7,124.5,121.8$, $113.8,105.3,30.6,27.5,23.0,20.0,14.0$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 78.10 ; \mathrm{H}, 7.96 ; \mathrm{N}, 6.51 ; \mathrm{O}, 7.43$. Found: C, $78.40 ; \mathrm{H}, 8.02 ; \mathrm{N}, 6.71$. Also isolated was 41% of $2,2^{\prime}$ bipyridine.

2-Isopropoxy-3-phenylquinolizin-4-one, 3q. Following the procedure for 3 m , a solution of 4 -chloro-3-isopropoxy-2-phenyl-2-cyclobutenone ${ }^{9}$ ($101 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.00$ equiv) and 2 -(tri- n-butylstannyl) pyridine ($189 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.19$ equiv) in toluene (5 mL) with of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%$) and tris(2-furyl)phosphine ($9.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight and 3 h a reflux gave after workup an oil that was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \times\right.$ 20 cm column) eluting with a gradient from 25% to 50% EtOAc/ hexanes to give $2,2^{\prime}$-bipyridine ($21 \mathrm{mg}, 53 \%, R_{f}=0.35$ in 25% EtOAc/hexanes), then 3-isopropoxy-2-phenyl-2-cyclobutenone as a white solid ($35 \mathrm{mg}, 0.17 \mathrm{mmol}, 41 \%$). TLC ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes, $R_{f}=0.53$); mp 66-67 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1749,1635,1599 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$

MHz): $\delta 7.68$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $7.18(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{sept}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.42(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5$ MHz : δ 181.6, $174.2,129.5,128.3$ (2C), 126.9, 126.1 (2C), $120.3,78.9,47.6,23.1(2 \mathrm{C})$. Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 77.20; H, 6.98; O, 15.82. Found: C, 77.52; H, 7.05. After elution of a small amount of another reaction product (12 mg , $0.03 \mathrm{mmol}, 14 \%$; TLC: $\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.32$) that was identified as part of another project and will be described in detail elsewhere, $3 q$ was eluted as a yellow-green solid ($12 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \%$). TLC ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.23$); mp 118-119 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right): 1652,1629 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ MHz): $\delta 9.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.83$ (d of app $\mathrm{t}, J=1.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.35 (s, 1 H), 4.66 (sept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.31 (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$): $\delta 161.9,158.5,141.9,134.0$, 131.1 (2C), 129.8, 127.9, 127.5 (2C), 126.5, 124.2, 113.2, 108.9, $90.4,71.1,29.7,22.0$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 77.40$; H, 6.13; N, 5.01; O, 11.46. Found: C, 77.32; H, 5.96; N, 5.19 .

3-Isopropoxy-2-methyl-1-oxopyrido[2,1-b]benzothiazole, $3 \mathbf{r}$. Following the procedure for 3 m , a solution of 4-chloro-3-isopropoxy-2-methyl-2-cyclobutenone, ${ }^{12}$ ($87 \mathrm{mg}, 0.50$ mmol, 1.00 equiv) and 2 -(tri- n-butylstannyl)benzothiazole (318 $\mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($11.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) and tris(2 -furyl)phosphine ($11.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight and 6 h at reflux gave after workup a solid that was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 20 \mathrm{~cm}$ column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then 14% EtOAc/hexanes to give $3 \mathbf{r}$ as a white solid ($60 \mathrm{mg}, 0.22 \mathrm{mmol}, 44 \%$). TLC ($\mathrm{SiO}_{2}, 14 \% \mathrm{EtOAc} /$ hexanes, $R_{f}=0.23$); mp 140-142 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane). IR ($\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}$): $1644,1592 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $9.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.30$ (m, 2 H), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.50(\mathrm{sept}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ ($\mathrm{s}, 3 \mathrm{H}$), 1.37 ($\mathrm{d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ ($\mathrm{CDCl}_{3}, 75.5$ MHz : $\delta 163.6,161.8,143.6,138.8,126.2,125.9,125.6,121.1$, $120.3,106.5,89.8,71.3,22.4$ (2C), 8.9. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NSO}_{2}: \mathrm{C}, 65.91 ; \mathrm{H}, 5.53 ; \mathrm{N}, 5.12 ; \mathrm{S}, 11.73 ; \mathrm{O}, 11.71$. Found: C, 65.76; H, 5.56; N, 5.05 .

2-Methyl-3-phenyl-1-oxopyrido[2,1-b]benzothiazole, 3s. Following the procedure for 3 m , a solution of 4 -chloro-2-methyl-3-phenyl-2-cyclobutenone ($96 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv) and 2-(tri- n-butylstannyl)benzothiazole ($255 \mathrm{mg}, 0.60$ mmol, 1.20 equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11.4 \mathrm{mg}$, $0.01 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) and tris(2 -furyl) phosphine ($11.6 \mathrm{mg}, 0.05$ mmol, 0.10 equiv) at $60^{\circ} \mathrm{C}$ overnight and 8 h at reflux gave after workup a solid that was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times 20 \mathrm{~cm}$ column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then $14 \% \mathrm{EtOAc} /$ hexanes to give 3 s as a white solid (84 $\mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%)$. TLC ($\mathrm{SiO}_{2}, 14 \%$ EtOAc/hexanes, $R_{f}=$ $0.29)$; mp 152-154 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}$, cm^{-1}): $1644,1592 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 9.34(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 7 \mathrm{H})$, $\left.6.56(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ $163.3,148.6,141.4,139.5,138.6,128.4$ (4C), 128.1, 126.4 , 126.2, 126.1, 121.3, 120.5, 119.6, 101.9, 14.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NSO}: \mathrm{C}, 74.20 ; \mathrm{H}, 4.50 ; \mathrm{N}, 4.81$; S, $11.00 ; \mathrm{O}, 5.49$. Found: C, 74.09; H, 4.51; N, 4.86 .

2,3-Diethyl-1-oxopyrido[2,1-b]benzothiazole, 3t. Following the procedure for 3 m , a solution of 4 -chloro- 2,3 -diethyl2 -cyclobutenone ${ }^{9}$ ($79 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv) and 2 -(tri- n butylstannyl)benzothiazole ($255 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.20$ equiv) in toluene (8 mL) with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%$) and tris(2 -furyl)phosphine ($11.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv) at $60^{\circ} \mathrm{C}$ overnight and 8 h at reflux gave after workup a solid that was purified by flash chromatography ($\mathrm{SiO}_{2}, 2 \times$ 20 cm column) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first to remove dba, then $14 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give 3 t as a white solid ($44 \mathrm{mg}, 0.17$ mmol, 34%). TLC ($\mathrm{SiO}_{2}, 14 \%$ EtOAc/hexanes, $R_{f}=0.42$); mp $146-148{ }^{\circ} \mathrm{C}$ (EtOAc/hexane). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{cm}^{-1}$): 1638 , 1590. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 9.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H})$, $2.74(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75.5 \mathrm{MHz}): \delta 162.8,150.4,141.5,138.8,126.2,126.0,125.9$,
125.1, 121.2, 120.4, 101.0, 26.2, 19.7, 14.4, 13.6. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NSO}: \mathrm{C}, 70.01 ; \mathrm{H}, 5.87 ; \mathrm{N}, 5.44 ; \mathrm{S}, 12.46 ; \mathrm{O}, 6.22$. Found: C, 69.81; H, 5.98 ; N, 5.19.

Acknowledgment. This investigation was supported by Grant No. CA40157, awarded by the National Cancer Institute, DHHS. We acknowledge the use of a VG 70-S mass spectrometer purchased through funding from the National Institutes of Health, S10-RR-02478, and a 300 MHz NMR and 360 MHz NMR purchased
through funding from the National Science Foundation, NSF CHE-85-16614 and NSF CHE-8206103, respectively.

Supplementary Material Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}, \mathbf{2} \mathbf{a}^{\prime}, \mathbf{2 b}, \mathbf{2} \mathbf{b}^{\prime}, \mathbf{3 c}, \mathbf{3 e}, \mathbf{3 g}$, and $\mathbf{3 h}$ (24 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{*}$ Abstract published in Advance ACS Abstracts, November 1, 1994. (1) Gurski, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 6101.
 (2) Gayo, L. M.; Winters, M. P.; Moore, H. W. J. Org. Chem. 1992, 57, 6896.
 (3) Liebeskind, L. S.; Granberg, K. L.; Zhang, J. J. Org. Chem. 1992, 57, 4345.
 (4) Liebeskind, L. S.; Zhang, J. J. Org. Chem. 1991, 56, 6379.
 (5) Xu, S. L.; Moore, H. W. J. Org. Chem. 1992, 57, 326.
 (6) Perri, S.' T.; Moore, H. W. J. Am. Chem. Soc. 1990, 112, 1897.
 (7) Selwood, D. L.; Jandu, K. S. Heterocycles 1988, 27, 1191.
 (8) Edwards, J. P.; Krysan, D. J.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 9868 .
 (9) Edwards, J. P.; Krysan, D.; Liebeskind, L. S. J. Org. Chem. 1993, 58, 3942.
 (10) Liebeskind, L. S.; Wang, J. J. Org. Chem. 1993, 58, 3550.
 (11) Liebeskind, L. S.; Wang, J. Y. Tetrahedron 1993, 49, 5461.
 (12) Krysan, D. J.; Gurski, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1992, 114, 1412.
 (13) Danheiser, R. L.; Cha, D. D. Tetrahedron Lett. 1890, 31, 1527.
 (14) Danheiser, R. L.; Nishida, A.; Savariar, S.; Trova, M. P. Tetrahedron Lett. 1988, 29, 4917.
 (15) Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693.
 (16) Danheiser, R. L.; Casebier, D. S.; Loebach, J. L. Tetrahedron Lett. 1992, 33, 1149.
 (17) Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093.

[^1]: (18) Yerxa, B. R.; Moore, H. W. Tetrahedron Lett. 1992, 33, 7811.
 (19) Moeller, K. D.; Wong, P. L. Bioorg. Med. Chem. Lett. 1992, 2, 739.
 (20) Fang, F. G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 3621
 (21) Hunt, A. H.; Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Swartzendruber, J. K.; Jones, N. D. J. Antibiot. 1988, 41, 771.
 (22) Oku, T.; Kuroda, A. Japan Patent 04257582 A2, 1992; Chem. Abstr. 1992, $118(9), 80823$.
 (23) Kitaura, Y.; Oku, T.; Hirai, H.; Yamamoto, T.; Hashimoto, M. U. S. Patent 4698349 A, 1987; Chem. Abstr. 1987, 190 (23), 210913. (24) Shigeta, S.; Mori, S.; Baba, M.; Hosoya, M.; Mochizuki, N.; Chiba, T.; De Clercq, E. Antiviral Chem. Chemother. 1992, 3, 171.

[^2]: (25) Kubo, K.; Ito, N.; Isomura, Y.; Sozu, I.; Homa, H.; Murakami, M. Chem. Pharm. Bull. 1979, 27, 1207.
 (26) Soliman, F. S. G.; Rida, S. M.; Badawy, E. S. A. M.; Kappe, T. Arch. Pharm. 1984, 317, 951.
 (27) Kobayashi, K.; Hiroi, J.; Kishi, S.; Sawase, K.; Hirayama, Y.; Chihara, S.; Imai, T.; Shigi, Y.; Shimoumura, K.; Kohsaka, M. Jpn. J. Pharmacol. 1993, 63, 73.
 (28) Jenck, F.; Moreau, J. L.; Bonetti, E. P.; Martin, J. R.; Haefely, W. E. J. Pharmacol. Exp. Ther. 1992, 262, 1121.
 (29) Dannhardt, G.; Kappe, T.; Meindl, W.; Schober, B. Arch. Pharm. 1990, 323, 375.
 (30) Jutzi, P.; Gilge, U. J. Organomet. Chem. 1983, 246, 163.

[^3]: (31) Perri, S. T.; Foland, L. D.; Moore, H. W. Tetrahedron Lett. 1988, 29, 3529.
 (32) Yamamoto, Y.; Nunokawa, K.; Ohno, M.; Eguchi, S. Syn. Lett. 1993, 781.
 (33) Pollart, D. J.; Moore, H. W. J. Org. Chem. 1989, 54, 5444.
 (34) Moore, H. W.; Perri, S. T. J. Org. Chem. 1988, 53, 996.

[^4]: (36) Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J. Org. Chem. 1988, 53, 2482.
 (37) Yamamoto, Y.; Yanagi, A. Heterocycles 1981, 16, 1161.
 (38) Allen, D. W.; Hutley, B. G.; Mellor, M. T. J. J. Chem. Soc., Perkin Trans. 2 1972, 63.
 (39) Nedenskov, P.; Clauson-Kaas, N.; Lei, J.; Heide, H.; Olsen, G.; Jansen, G. Acta Chem. Scand. 1969, 23, 1791.
 (40) Roe, A. M. J. Chem. Soc. (A) 1963, 2195.
 (41) Danheiser, R. L.; Savariar, S.; Cha, D. D. In Organic Synthesis, Vol 68; White, J. D., Boeckman, R. K., Coffen, D. L., Meyers, A. I., Overman, L. E., Paquette, L. A., Smart, B. E., Winterfeldt, E. and Yamamoto, H., Eds.; John Wiley \& Sons Inc: 605 3RD Ave, New York, NY 10016, 1990; Vol. 68; pp 32.

[^5]: (42) Handbook of Data on Organic Compounds; 2nd ed.; Weast, R. C.; Grasselli, J. G., Eds.; CRC Press: 1989; Vol. III, pp 11339.
 (43) Pouchert, C. J. The Aldrich Library of NMR Spectra; II ed.; Aldrich Chemical Company, Inc.: 1983; Vol. 2, pp 612.

